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Next-nearest neighbour forces in diatomic superlattices 

R Hadizad, D R Tilley and J Tilley 
Department of Physics, University of Essex, Wivenhoe Park, Colchester CO4 3SQ. UK 

Received 15August 1991 

Abstract. Results are presented for phonons in a ID diatomic model superlattice. Each 
frequency o corresponds to two Bloch wavenumbers Q ,  and Q,. For a c 0.25, where a is 
the ratio of next-nearest to nearest force constants. the results are essentially a perturbation 
ofthose foundwith nearest-neighbour forcesonly. For (I > 0.25, however, qualitativelynew 
results are found, and in particular both Q , and Q2 can be real over some frequency range. 
Illustrative dispersion curves are presented. 

1. Introduction 

In a previous paper (Hadizad et'ul1991, referred to as I) we gave a detailed discussion 
of the effect of including next-nearest neighbour (NNN) forces in the lattice dynamics of 
a ID monoatomic superlattice. The general background and motivation were covered in 
I. Although NNN forces have been included in other lattice-dynamical calculations, it  
appears that some of the qualitative results for the hulk lattice derived in I are new. In 
particular, when the ratio CY = C2/C1 Of NNN to nearest-neighhour (NN) force constants 
exceeds the value 0.25, there is a frequency interval in which two real values q1 and q2 
of wavevector are found in the bulk material. In consequence, for CY > 0.25 the folded 
acoustic-mode spectrum of a superlattice takes a more elaborate form than in the NN 
model. 

In this paper, we extend the results of I to a ID diatomic superlattice. The most 
important difference between the bulk diatomic and monatomic lattices is the appear- 
ance in the former case of the optic-phonon branch in addition to the acoustic-phonon 
branch. In a diatomic superlattice, both optic and acoustic phonon branches are folded 
into the mini Brillouin zone -n/L < Q < n/L, where Lis  the superlattice period. The 
nature of the optic phonons depends upon the frequency intervals occupied by the optic- 
phonon bands of the two components of the superlattice (see Sapriel and Djafari- 
Rouhani 1989). If there is no overlap between these intervals, as in GaAs/AIAs for 
example, then the lattice displacements in an optic mode of the superlattice are largely 
restricted to the component in which a hulk optic phonon propagates, and the dispersion 
curve of the mode is very flat (w almost independent of Q). It is then customary to speak 
of confined optic phonons. On the other hand, if the optic-phonon bands overlap, as in 
the GaAs reststrahl region of GaAs/AI,Ga,-,As for example, there is more dispersion 
in the superlattice optic modes (Albuquerque er ai 1988). 

In section 2 we review the lattict dynamics of a bulk diatomic ID crystal including 
NNN forces. Like the monatomic crystal, the addition of NNN forces means that four 
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FigweI.(o) Bulk i~diatomic~~~cryslal,withnotationde~ed. (b)Superlatticemodel for 
section 3. Spring constants are the same throughout as in (n) .  

values of wavenumber q, namely kq,, ?q2, are allowed for each frequency, rather than 
thetwo thatoccurwithwiforcesonly. Ingeneral,ofcourse,q, andqzarenot both real. 

Next, we discuss a superlattice model in which the atomic masses in component 1 are 
mo and m,, those in component 2 are mo and mz while the force constants are the same 
throughout. This may be seen as a simple model corresponding to GaAs/AI,Ga,_,As, 
and it issufficientlygeneral to bring out qualitativepointsof interest. The formal results, 
presented in section 3, are very similar to those for the monatomic superlattice. Since 
there are four values of q, the transfer matrix T is 4 X 4. T is easily shown to be 
unimodular, det T = 1, so that the eigenvalues satisfy ?, l?,z?,3?, = 1 and in fact occur as 
twopaus(?,,,?,i')and(?,z,?,i1).BlochvectorsQ,aredefinedbyexp(iQ,l) = ?,..The 
formal results are illustrated in section 3 with graphs of dispersion C U N ~ S .  and a brief 
discussion is given in section 4. 

2. Bulk crystal 

Weconsiderthemodelshowninfigure l(a),inwhichmassesmoatpositions2naalternate 
with masses m, at positions (2n + 1)a. NN and NNN force constants C, and C2 are defined 
as shown. The equations of motion for the two species of atom are 

-mowzuzn = CI(uzn-, + ubrl - 2 ~ ~ )  + C2(u,-, + ubt2  - 2u,) 

-m,w2uZn+1 = CI(UZ" +U,,, -2u,t,) + CdU,-l + u,+3 --2k!?t,).  

(1) 

(2) 
These are solved with the amatz 

uZn = uo exp(2inqa) (3) 
uZn+,  = U ,  exp[i(2n + l )qa] .  (4) 

Equations (1) and (2) lead to two expressions for r = uI/uo: 
r = 2Cl cosqa/(-m,wZ + 4C2 sinZ qa + 2C1) 

= ( -mowZ + 4Cz sin2 qa + 2C,)/2CI cosqa. 
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Figure 2. Bulk dispersion curves. D versus q = qa. Complex t) of the form z/2 + iy is 
represented as a broken curve withy as the abscissa measured from q = n/2. while iy is 
represented as a broken curve withy as !he negative of the abscissa measured from q = 0. 
( 0 )  NN crystal (a = 0) for y = mn/m, = 0.7. ( b )  a = 0.1 and y = 0.8. (c) a = 0.25 and y = 
0.8.(d)ry= l.Oandy=0.8. 

Thisgives the dispersion equation, which is conveniently written as a quadraticequation 
for sin2 qa: 

16C: sin4 qa + [16C1C2 - 4C2wZ(mo + m l )  + 4C:] 

x sin2 qa + [m0mlo4 - 2Clwz(m0 + m,)] = 0. (6) 

For a given o, this has solutions sin qa = 
indeed occur in pairs &ql,  i q 2 ,  which of course need not be real. 

illustrated in figure 2. The frequency is scaled as P = w/wo.  where 

iB@, so that the wavevectors do 

Equation (6) is in a convenient form for numerical solution, and various cases are 

w;  = 2C,(l/m0 + l /m,)  (7) 

which will be recognised as the frequency at the top of the optic-phonon band (q = 0 
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point) for the NN crystal. Two parameters are involved in (6) ,  namely the ratio of the 
force constants 

and the ratio of the masses 

y =  m,/mo.  (9) 

Figure 2(a) shows the well known NN dispersion curve for y = 0.7. With the notation 
of figure l(a), the Brillouin-zone edge is at I ]  = qa = x/2. Figure 2(a) recalls that for 
y # 1 there is a stop band between the acoustic and optic branches in which q performs 
an excursion off the real axis, q = z / 2  + iy. I n  fact a surface mode on the semi-infinite 
diatomic lattice is found within this stop band (Wallis 1957, Cottam and Tilley 1989). 
We also show in figure 2(a) the imaginary solution q = iy found for 52 > 1 ,  

A key feature of the monatomic case is that a = 0.25 is a critical value of this ratio. 
Although there are two values of q for each frequency, only one is real for a < 0.25. 
However, for a > 0.25 there is a frequency interval in which both values of q are real. 
Exactly the same is true for the diatomic crystal, as illustrated in~figures Z(6) to 2(d). In 
figure 2(6) it is seen that for small a the second root appears, but takes the form iy with 
y fairly large, so i t  is not of great physical significance. Figure 2(c) is for the critical value 
o = 0.25. and shows a very flat d.ispersion curve (the first three derivatives d"w/dq" 
vanishing) at the top of the optic-phonon band. Figure Z(d). for the large value y = 1 .O, 
shows how the point q = 0, 51 = 1 on the optic-phonon band becomes a minimum for 
o > 0.25, with the lower part of the optic band and the upper part of the acoustic 
band overlapping to give two real values of q in some frequency range above B = 1. 
Comparison of figures 2(b)  to 2(d)  also shows how the root q = iy moves closer to the 
origin as a increases. 

One way of understanding the NN diatomic dispersion curve, figure 2(a).  is to start 
from the monatomic crystal with mo =,m,, in which case a simple acoustic-phonon 
dispersion curve is found in the Brillouin zone 0 s q s n. If ml is now taken slightly 
different from mo, the dispersion curve folds into the reduced zone 0 < q 6 z/2 appro- 
priate to the diatomic crystal. As the ratio m,/m,  varies further from zero a gap opens 
at the zone edge q = n / 2 ,  resulting in a curve like that shown in figure 2(a). In a similar 
way, the dispersion curves of figures 2(b) to 2(d)  may be seen as resulting from folding 
of the corresponding monatomic NNN dispersion curves, shown as figures 2(a) and 2(b) 
of 1. 

3. Superlattice 

We consider the superlattice model shown in figure l(6). A unit cell of the superlattice 
consists of nl(mo, m ,) pairs followed by n2(mo, m2) pairs, so that the unit cell has length 
L = Z(nl + Since the spring constants are taken to be the same throughout, the 
only difference between the tn'o components of the superlattice is in the occurrence of 
the two different masses m,  and m2. 
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The derivation of the dispersion equation follows along very similar lines to that for 
the monatomic superlattice. The displacements at frequency w for an atom at position 
x in unit cell 1, component 1 can be written 

uor = a: exp[iq,,(x - IL)] + b: exp[-iq,,(x - IL)] 

+ &exp[iqI2(x - IL)] + d,Lexp[-iq12(x - ! L ) ]  (10) 

for an atom of mass mo, and 

uIr = &rl1 exp[iq,,(x - IL + a ) ]  + bkrll exp[-iqll(x - 1L f a ) ]  

+ cfrlz exp[iq,,(x - IL + a)] t dkr12 exp[-iq12(x - IL + a)] (11) 

for an atom of mass m,. Here q i l  and q I 2  are the two solutions of the bulk dispersion 
equation (6) for the given frequency, while rI1 and rI2 are given by (5) with variables qI1 
or qI2 .  The superscripts L indicate that the phases in the exponential factors are referred 
to the left-hand end of the cell at x = IL. As for the monatomic case, amplitudes UP etc. 
canbeintroduced bysimilardefinitionsto (10)and(ll) butwithx - IL - Zn,arepIacing 
x - IL. The vectors 1 U'-) = (a:bfc:d:)T and \UR) = (ap'bFcPdf')' are related by 

IUR) = FIIUL) (12) 

where Fl is the diagonal matrix [ f l l ~ I l ~ 2 ~ l ~ ]  with 

f 1 j  = exp(2iq1,n,a) 71, = f  ;I j =  1 , Z .  (13) 

The displacements in component 2 are described similarly by vectors IF+*} and IWR) 
related by a phase matrix F,. 

The vectors 1 W } and I UF) are related by the equations of motion of the four atoms 
at the interface, marked in figure l(b): 

MllUp)=M21W,L) (14) 

where 

and 

c.. = s-1 si, = exp(iqUa) ' I  'I . 
Finally the transfer matrix T is defined by 

l U f + l ) = T l U k )  = M~IMIF~M~~MIFI IU:)  (17) 

which is formally identical to the expression for the monatomic superlattice. 
As for the monatomic case, we have used a symbolic algebra package (Macsyma) to 

find analytic expressions for the elements of T and the results are given elsewhere 
(Hadizad 1991). Here we proceed straight to numerical illustrations of dispersion curves 



9702 R Hadizad et a1 

OL 01 

Figure3. Superlatticedispersioncurves, 66 versus QL. whereRisdefinedaspreviously, The 
a w e s  are for a 4 + 4 superlattice wich forceanstant ratio a = 0.1. la) Y ,  = m,/m, = 1.0 
and y2  = m,/m, = 1 .O. (b) y ,  = 0.7 and yI = 0.6 

nL OL 

Figure 4. Superlattice dispersion curves for a 4 + 4 superlattice with (I = 1.0. (U) y ,  = y2 = 
0.6 . (b)y ,  =0.7and y2=0.6.  

w versus QL, where the Bloch wavevectors Q are related to the eigenvalues A of T by 
the relation stated in section 1: 

exp(iQL j = h. (18) 

Figure 3 is concerned with a small value of the force-constant ratio a. In figure 3(a) we 
show the dispersion curves for a 4 + 4 superlattice with all masses equal, y ,  = y2 = 1. 
This is very close to a simple folding into the mini Brillouin zone of a dispersion curve 
like figure 2(a) or 2(b) ,  or indeed since the masses are equal within each component it 
is simply the folding of a bulk monatomic dispersion curve. As we have emphasized 
throughout, there are two Bloch vectors Q for each frequency, but one of the roots is 
imaginary everywhere and of rather large magnitude, so it is not of great physical 
significance. For large enough frequency, S2 2 1.1, both roots for Q are complex and 
are not represented on the figure. Figure 3(b) differsfrom figure 3(aj in having mass 
ratios different from unity and different from each other. In order to bring out the 
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structure in the mini Brillouin zone, most of the second (pure imaginary) Bloch vector 
has been omitted. In this case, because y1 and y2 are both quite different from unity, the 
distinction between acoustic and optic branches is maintained in the superlattice. Since 
(Y is small, the figure is very close to the picture of folded acoustic modes together 
with confined optic modes that is found with NN forces and which is the paradigm for 
interpretation of Raman scattering experiments. 

For large awe are concerned with folding into the mini Brillouin zone bulk dispersion 
curves like that in figure 2(d). Here the frequency ranges of the acoustic and optic 
branches overlap. Figure 4(a) shows the dispersion curves for a 4 + 4 superlattice in 
which the two components are in fact identical: the relationship with figure 2(d) and the 
overlap of the acoustic and optic branches is quite clear. Figure 4(b) shows the evolution 
of figure 4(a) when the two components differ; stop bands appear, and the overlap 
between the branches becomes more complicated. 

4. Discussion 

We have derived and illustrated the dispersion equations for a ID diatomic superlattice 
with both NN and NNN forces. This is a significant extension of our previous work on 
monatomic superlattices since, firstly, there is now an optic as well as an acoustic branch 
and secondly, many of the experimental systems are diatomic. The general structure of 
the problem is similar to that found for the monatomic superlattice, in that one is dealing 
with two pairs of bulk wavevectors ' q l  and +q2 and for the superlattice with two pairs 
of Bloch vectors kQ and +e,. As in the monatomic case, although the dispersion 
curves can look quite complicated, they can usually be interpereted in terms of simple 
ideas about folding into the mini Brillouin zone. The value 0.25 of the force-constant 
ratio a = C2/C, is once again critical. For (Y < 0.25, the NNN forces produce no more 
than a perturbation on the results found with NN forces, but for a Z 0.25 some quali- 
tatively new results appear. 
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