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Next-nearest neighbour forces in diatomic snperlattices
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Department of Physics, University of Essex, Wivenhoe Park, Colchester CO4 38Q, UK

Received 15 August 1991

Abstract. Results are presented for phonons in a D diatomic model superlattice. Each
freguency @ corresponds to two Bloch wavenumbers ¢, and @,. For & < 0.25, where « is
the ratio of next-nearest to nearest foree constants, the results are essentially a perturbation
of those found with nearest-neighbour forces only. For & > 0.25, however, qualitatively new
results are found, and in particular both Q| and (2, can be real over some frequency range.
Iustrative dispersion curves are presented.

1. Introduction

In a previous paper (Hadizad ef'af 1991, referred to as I) we gave a detailed discussion
of the effect of including next-nearest neighbour (NNN) forces in the lattice dynamics of
a 1D monoatomic superlattice. The general background and motivation were coveredin
I. Although Nnn forces have been included in other lattice-dynamical calculations, it
appears that some of the qualitative results for the bulk lattice derived in I are new. In
particular, when the ratio &« = C,/C, of NNN to nearest-neighbour (NN) force constants
exceeds the value 0.25, there is a frequency interval in which two real values ¢, and ¢,
of wavevector are found in the bulk material. In consequence, for > 0.25 the folded
acoustic-mode spectrum of a superlattice takes a more elaborate form than in the NN
model.

In this paper, we extend the results of I to a 1D diatomic superlattice. The most
important difference between the bulk diatomic and monatomic lattices is the appear-
ance in the former case of the optic-phonon branch in addition to the acoustic-phonon
branch. In a diatomic superlattice, both optic and acoustic phonon branches are folded
into the mini Brillouin zone —x/L < Q < /L, where L is the superlattice period. The
nature of the optic phonons depends upon the frequency intervals occupied by the optic-
phonon bands of the two components of the superlattice (see Sapriel and Djafari-
Rouhani 1989). If there is no overlap between these intervals, as in GaAs/AlAs for
example, then the lattice displacements in an optic mode of the superlattice are largely
restricted to the component in which a bulk optic phonon propagates, and the dispersion
curve of the mode is very flat (w almost independent of Q). It is then customary to speak
of confined optic phonons. On the other hand, if the optic-phonon bands overlap, as in
the GaAs reststrahl region of GaAs/Al,Ga, _ ,As for example, there is more dispersion
in the superlattice optic modes (Albuguerque er al 1988).

In section 2 we review the lattice dynamics of a bulk diatomic 1D crystal including
NNN forces. Like the monatomic crystal, the addition of NNN forces means that four
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Figure L. (¢) Bulk iD diatomic Nnw crystal, with notation defined. () Superlattice model for
section 3. Spring constants are the same throughout asin (a).

values of wavenumber ¢, namely *q,, *g,, are allowed for each frequency, rather than
the two that occur with NN forces only. In general, of course, g, and g, are not both real.

Next, we discuss a superlattice model in which the atomic masses in component 1 are
mg and m,, those in component 2 are m and m, while the force constants are the same
throughout. This may be seen as a simple model corresponding to GaAs/AlGa, _ As,
and it is sufficiently general to bring out qualitative points of interest. The formal results,
presented in section 3, are very similar to those for the monatomic superlattice. Since
there are four values of g, the transfer matrix T is 4 X 4. T is easily shown to be
unimodular, det T = 1, so that the eigenvalues satisfy A ;4,4 ;4 , = 1 and in fact oceur as
twopairs (A, A7!)and (A,, A3'). Bloch vectors 0, are defined by exp(iQ ,L) = A,. The
formal results are illustrated in section 3 with graphs of dispersion curves, and a brief
discussion is given in section 4.

2. Bulk crystal

We consider the modelshownin figure 1(a), in which masses m at positions 2na alternate
with masses m1, at positions (27 + 1)a. NN and NNN force constants C, and C, are defined
as shown. The equations of motion for the two species of atom are

—my@ Uy = Cy(Uy -1 + Upsy — 2Uz,) + Colttan-2 + taner — 2itz,) 6y
=m0 ugnsy = Cy(ugy + thgniz = 2ugee1) + Collizn—y + a3 — 2igyiy). (2}
These are solved with the ansatz
Uy = Uy eXp(2inga) 3
Uzary = uy expli(Zn + 1)qa). 4

Equations (1) and (2) lead to two expressions for r = u, /ug:
r=2C, cos gqaf(—m w? + 4C; sin? ga + 2C,)

= (—mow? + 4C, sin? ga + 2C;)/2C, cos ga. (5)
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Figure 2. Bulk dispersion curves,  versus 5 = ga. Complex 1 of the form x/2 + iy is
represented as a broken curve with y as the abscissa measured from n = /2, while iy is
represented as 2 broken curve with y as the negative of the abscissa measured from 5 = 0.
(a) NN crystal (@ = 0) for ¥ = me/m, = 0.7. () o =01and y=0.8. (c) =025 and y =

08. (d)a=10andy=0.8.

This gives the dispersion equation, which is conveniently written as a quadratic equation

for sin? ga:
16C3 sin® ga + [16C, C, — 4C, 0% (g + my) + 4C]
X sin? ga + [mgm, w* — 2C,0*(my + m )] = 0. (6)

For a given w, this has solutions sin ga = +AY2, B2, so that the wavevectors do

indeed occur in pairs +q,, =¢,, which of course need not be real.
Equation (6) is in a convenient form for numerical solution, and various cases are

illustrated in figure 2. The frequency is scaled as Q = w/w,, where
(7)

CU(Z) = 2C1(1/m0 + 1/m[)
which will be recognised as the frequency at the top of the optic-phonon band (g = 0
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point) for the NN crystal. Two parameters are involved in (6), namely the ratio of the
force constants

and the ratio of the masses

y = mi/my. (9)

Figure 2{a) shows the well known NN dispersion curve for y = 0.7. With the notation
of figure 1(a), the Brillouin-zone edge is at #§ = ga = /2. Figure 2(a) recalls that for
¥ # 1 there is a stop band between the acoustic and optic branches in which n performs
an excursion off the real axis, n = x/2 + iy. In fact a surface mode on the semi-infinite
diatomic lattice is found within this stop band (Wallis 1957, Cottam and Tilley 1989).
We also show in figure 2(a) the imaginary solution n = iy found for > 1,

A key feature of the monatomic case is that o = 0.25 is a critical value of this ratio.
Although there are two values of g for each frequency, only one is real for o < 0.25,
However, for « > 0.25 there is a frequency interval in which both values of g are real.
Exactly the same is true for the diatomic crystal, as illustrated in figures 2(4) to 2(d}. In
figure 2(b) it is seen that for small & the second root appears, but takes the form iy with
y fairly large, so it is not of great physical significance. Figure 2(c}) is for the critical value
a = 0.25, and shows a very flat dispersion curve (the first three derivatives d"w/dg"
vanishing) at the top of the optic-phonon band. Figure 2(<), for the large vaiue y = 1.0,
shows how the point ¢ = 0, & = 1 on the optic-phonon band becomes a minimum for
o > 0.25, with the lower part of the optic band and the upper part of the acoustic
band overlapping to give two real values of g in some frequency range above 2 = 1.
Comparison of figures 2(5) to 2(d) also shows how the rgot n = iy moves closer to the
origin as & increases.

One way of understanding the nN diatomic dispersion curve, figure 2(a), is to start
from the monatomic crystal with sy = m,, in which case a simple acoustic-phonon
dispersion curve is found in the Briliouin zone 0 < < &. If m, is now taken slightly
different from my, the dispersion curve folds into the reduced zone 0 < 5 < /2 appro-
priate to the diatomic crystal. As the ratio m,/m, varies further from zero a gap opens
at the zone edge n = /2, resulting in a curve like that shown in figure 2(a). In a similar
way, the dispersion curves of figures 2(b) to 2(d) may be seen as resulting from folding
of the corresponding monatomic NNN dispersion curves, shown as figures 2(a) and 2(b)
of 1.

3., Superlattice

We consider the superlattice model shown in figure 1{b). A unit cell of the superlattice
consists of n1{my, m,) pairs followed by n,(my, m,) pairs, so that the unit cell has Jength
L = 2(n + ny)a. Since the spring constants are taken to be the same throughout, the
only difference between the two components of the superlattlce is in the occurrence of
the two different masses m,; and m,.
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The derivation of the dispersion equation follows along very similar lines to that for
the monatomic superlattice. The displacements at frequency w for an atom at position
% in unit cell /, component 1 can be written

uy = ar expligy; (x — IL)] + bf exp[—igy; (x — IL)]

+ cr expligyp(x — IL)] + dF exp[—igy,(x — IL)] (10)
for an atom of mass mg, and
uy = afry; explig, (x — IL + a)] + bFry; exp[—igy (x — IL + a)]

+ cfryp explig(x — IL + a)] + dFry; expl—ig(x — IL + a)] (11)

for an atom of mass m,. Here g,, and g, are the two solutions of the bulk dispersion
equation (6) for the given frequency, while r,; and 7, are given by (5) with variables g,
or g, The superscripts L indicate that the phases in the exponential factors are referred
to the left-hand end of the cell at x = IL. As for the monatomic case, amplitudes a} etc.
can be introduced by similar definitions to (10) and (11) but withx — IL — 2n,areplacing
x — IL. The vectors |\ Uy = (a} bFcFdF)T and |U®)y = (afbfcRdR)T are related by

|URy =F,|U") (12)
where F, is the diagonal matrix [ fi1f;1fi212] with
fy = exp(2ig;n,a) f_lj =fi j=12 (13)

The displacements in component 2 are described similarly by vectors |Wt) and |WR)
related by a phase matrix F,.

The vectors |WE} and |UR} are related by the equations of motion of the four atoms
at the interface, marked in figure 1(b):

M, |[UR)=M,|W}) (14)
where
1 1 1 1
raSpy FaSn raSp TaSa -
M=t 2 2 ) (15)
LH1 h SR 55
raSn FaSa TaSa FaSa
and

ey

s = exp(iq 4a) =85 (16)

Finally the transfer matrix T is defined by
Uk ) =T|UL) = MT'MF,M;'M,F, |U}) (17)

which is formally identical to the expression for the monatomic superlattice.

As for the monatomic case, we have used a symbolic algebra package (Macsyma) to
find analytic expressions for the elements of T and the results are given elsewhere
(Hadizad 1991). Here we proceed straight to numerical illustrations of dispersion curves
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Figure 3. Superlattice dispersion curves, Q versus QL , where & is defined as previousty, The
curves are for a 4 + 4 superlattice with force-constant rano e=0. 1 (a) yy=m/my=1.0

and y, = my/me= 1.0. (b) y, = 0.7 and v, = 0.6.
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Figure 4. Superlattice dispersion curves for a 4 + 4 superlattice with o = 1.0, (a} v,

0.6.{b)y, =0.Tand y, = 0.6.

w versus QL, where the Bloch wavevectors O are related to the eigenvalues A of T by

the relation stated in section 1:
exp(iQL) =4 (18)
Figure 3 is concerned with a small value of the force-constant ratio . In figure 3(a) we
show the dispersion curves for a 4 + 4 superlattice with all masses equal, y, =y, = 1.
This is very close to a simple folding into the mini Brillouin zone of a dispersion curve
like figure 2{a) or 2(b), or indeed since the masses are equal within each component it
is simply the folding of a bulk monatomic dispersion curve. As we have emphasized
throughout, there are two Bloch vectors Q for each frequency, but one of the roots is
imaginary everywhere and of rather large magnitude, so it is not of great physicai
significance. For large enough frequency, Q = 1.1, both roots for Q are complex and
are not represented on the figure. Figure 3(b) differs from figure 3(a) in having mass
ratios different from unity and different from each other. In order to bring out the
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structure in the mini Brillouin zone, most of the second ( pure imaginary) Bloch vector
has been omitted. In this case, because v, and y, are both quite different from unity, the
distinction between acoustic and optic branches is maintained in the superlattice. Since
« is small, the figure is very close to the picture of folded acoustic modes together
with confined optic modes that is found with NN forces and which is the paradigm for
interpretation of Raman scattering experiments.

Forlarge a we are concerned with folding into the mini Brillouin zone bulk dispersion
curves like that in figure 2(d). Here the frequency ranges of the acoustic and optic
branches overlap. Figure 4(a) shows the dispersion curves for a 4 + 4 superlattice in
which the two components are in fact identical: the relationship with figure 2{d) and the
overlap of the acoustic and optic branches is quite clear. Figure 4(5) shows the evolution
of figure 4(#) when the two components differ; stop bands appear, and the overlap
between the branches becomes more complicated.

4. Discuassion

We have derived and illustrated the dispersion equations for a 1D diatomic superlattice
with both NN and NNN forces. This is a significant extension of our previous work on
monatomic superlattices since, firstly, there is now an optic as well as an acoustic branch
and secondly, many of the experimental systems are diatomic. The general structure of
the problem is similar to that found for the monatomic superlattice, in that one is dealing
with two pairs of bulk wavevectors +¢4,; and *g, and for the superlattice with two pairs
of Bloch vectors =0, and =0 ,. As in the monatomic case, although the dispersion
curves can look quite complicated, they can usually be interpereted in terms of simple
ideas about folding into the mini Brillouin zone. The value 0.25 of the force-constant
ratio & = C,/C, is once again critical. For o < 0.25, the NN forces produce no more
than a perturbation on the results found with Nx forces, but for & > 0.25 some quali-
tatively new results appear.
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